
(in cont ras t  to the second variant) ,  the s teepness  and veloci ty of a wave affecting the stabil i ty of i ts evolution 
lie outside the wave slope vs wave ve loc i ty  d iagram which holds for actual  waves ([1], Fig. 6.4-2). The above 
pecu l ia r i t i es  in the evolution of wind waves a r e  in ag reement  with the resu l t s  of observat ions  in nature.  

For  values  in the range 0 < F r <  1 / R - R ,  a t r e n d o p p o s i t e t o  that desc r ibed  above p reva i l s :  The leeward 
wave slopes become f lat ter ,  while the windward slopes become s teeper .  

Capi l lary Wind Wave. Var iant  3: W=3.995; u = - l ;  ~(a, 0 )=a+  i0 .2r  sin a; r (a ,  0)= 2 - 0 . 4 ~  sin a. The 
calculations a r e  pe r fo rmed  for  the t ime up to the moment  t = 1 for the in terval  At= 1/90 without taking into 
account  the der iva t ives  Fit  and ~ttt* The wave evolution shown in Fig. 4 (the wave peaks and troughs a re  also 
connected by dashed s t ra ight - l ine  segments)  is s imi l a r  to the evolution of  gravi ta t ional  waves.  However,  i t  is  
a lso cha rac t e r i zed  by the fact  that  the wave tops become f la t ter  and the t roughs deeper .  

With a reduct ion in the Froude and Weber  numbers  in compar ison with those indicated in var ian ts  1-3, 
the wave evolution is  r e ta rded ,  while the cr i t ica l  in terval  At ,  remains  a lmos t  unchanged. The la t te r  leads to 
the fact  that,  in calculating r ipple waves,  the ro le  of the nonlinear effects  caused by the f ini teness  of the wave 
amplitude is not revea led  even if  a large amount  of computer  t ime is used. This means that  the l inear  theory  
adequately desc r ibes  the motion of f ini te-ampli tude r ipple waves.  
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2. 

3. 
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L I Q U I D  W I T H  A H I G H - V I S C O S I T Y  C O R E  IN A 

C O O L E D  C H A N N E L  
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Viscoplas t ic  liquids occupy an important  posi t ion among non-Newtonian liquids [1, 2]. The hydrodynamic 
s tabi l i ty  of the two-dimensional  Poiseui l le  flow of these  liquids was invest igated in [3, 4], The mechanical  
cha rac t e r i s t i c s  of v i s e . p l a s t i c  media  a re  de te rmined  by the d imensionless  rheological  equation, which r e l a t e s  
the s t r e s s  tensor  devia tor  ~ ij to the s t r a in  r a t e  t ensor  fij [1]: 

~ tl for V t o~j 2 l §  (1) 

where  ~t=ToL/#U is the p las t ic i ty  p a r a m e t e r ;  p is the p las t ic  dynamic v iscos i ty ;  T o is  the ul t imate  shear ing 
s t r e s s ;  L is  the cha rac t e r i s t i c  dimension (half-width of the channel); and U is the cha rac t e r i s t i c  veloci ty.  Due 
to the exis tence  of the ul t imate  shear ing  s t r e s s  T O for  a v iscoplas t ic  liquid, zones where  the medium moves  
as  a quasisol id  body as  well  as v iscous  flow zones can fo rm in the flow of such a liquid through channels [2]. 

The d imens ionless  shear ing  s t r e s s  T as  a hmction of the dimensionless  shear ing ra te  5 for  unidimen- 
St .hal  she a r  flow of a v i s e ,  p las t ic  liquid (1) is shown in Fig. 1. The rheological  equation (1) is  approximate  
for many actual  liquids and the flow curve is  essent ia l ly  nonlinear for  low shear ing r a t e s  [5] (dashed curve in 
Fig. 1). The t he . l og i ca l  law is in this case wri t ten  conveniently as  
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z~j = 2,1(o))/u, (2) 

where  co-  "fl~ijfij; ~(co) is a continuous monotonic function, which is bounded for 0 <--co-< ~; 1-~?(co)-< ~? (0). If 
the intensi ty  of the de fo rma t ion- ra t e  tensor  w is l a rge r  than, or  equal to, a cer ta in  value co-  co* <<1, the 
theologica l  law (2) coincides with (1). The flow regions where w < co* will be r e f e r r e d  to as  h igh-v iscos i ty-  
flow zones.  

Exper iments  show that the non-Newtonian cha rac te r i s t i c s  of many v iscoplas t ic  media depend cons ider -  
ably on the t e m p e r a t u r e  [6]. At a cer ta in  t empera tu re  T = T* they vanish al together  (7 0 = 0 for  T >- T* ) .  T h e r e -  
fore,  we shall  subsequently consider  that  T0=I-0(T) and ~=~(T,  co). 

The s y m m e t r i c  distr ibution of the liquid veloci ty  in a two-dimensional  channel which is cooled s y m m e t r i -  
�9  with r e spec t  to i ts axis under  the action of a constant d imensionless  p r e s s u r e  gradient  8 p / a x = - 2 / R e  

(Re = p U L l #  is the Reynolds number;  p is the density of the medium) under the condition that  the flow pa ram-  
e t e r s  va ry  l i t t le  along the channel ( a / a x ~  o) is de te rmined  by 

( l -  ~)~ + ~ xdy + xi-- C) (t -- C) +0(~*) for --~<y<~0, 

- - t  

u (y) .= Y~ _ 2~y + 1 - -  2~ + • + ~ ( - -  ~) (1 + y) + 0(0)*) (3) 

for - - i ~ y ~ - - ~ ,  

where  ~ = n / 2  + O(w* ) is the half-width of the h igh-viscos i ty-f low core,  which is de te rmined  f rom the equilib- 
r ium condition, while w ( - ~ ) =  w* << 1. The veloci ty  distr ibution (3) holds only if u[T(y)][~=_ 1 ~.~ 2, since, 
o therwise ,  a h igh-v iscos i ty  zone fo rms  at  the channel wails,  and distr ibution (3) does not hold. 

Consider  the hydrodynamic  stabil i ty of the flow (3) with r e spec t  to infini tesimal,  two-dimensional ,  and 
per iodic  with r e s p e c t  to t ime and channel  length per turbat ions  of the s t r e a m  function 

~p(x, y, t) = (P(Y) exp i~(x  - -  ct) 

and the t e m pe r a tu r e  

O(x, y, t) = y(y) exp i(z(x - -  ct), 

where  ot a~d ~c  a re  the d imensionless  wave number  and the complex per turbat ion  frequency,  respect ive ly .  
Although the inapplicabil i ty of  Squire ' s  t heo rem in the general  case of non-Newtonian media has been demon-  
s t ra ted  in [7], the p rob lem of the effect  of th ree-d imens iona l i ty  of the per turbing motion on the hydrodynamic 
stabil i ty of two-dimensional  gradient  flow of a non-Newtonian liquid charac te r i zed  by the rheological  law (2) 
and a function ~ = ~(w) of a r b i t r a r y  type should be the subject  of an independent investigation. 

We obtain the following f rom the sys tem of equations of motion and energy,  neglecting the evolution of 
heat  due to v iscous  dissipation,  with an accu racy  to the inf ini tes imal  values of the higher  o rd e r s  for  r and 
~(y): 

Fig. 1 

R e~. fO 
~2 

B, 

0,2 

Fig. 2 
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( u - c ) ~ + r ~ =  t ( r  (4} 

tt I r [ I V  (u'c)(~"--a2~) - u ~ = ~ i ~ L ~  - - 2 a ~  " ~ -  

-9 a'qg) -F 2~0 (q)" - -  a2q) ') -F ~o (q# -4- a2q )) -9 
z 0H 

+ u,a~[{~ ] 

w h e r e  Pr=/~C/X i s t h e  P r a n d t l  number;  C is the specif ic  heat of  the medium; ~ is the t he rma l  conductivity 
coefficient;  the ze ro  s u b s c r i p t d e n o t e s  unper turbed  flow; the p r im es  denote differentiat ion with r e spec t  to y. 

Equation (5) is  Simplified in the r a n g e - 1 - < y - < - ~ :  

Development  of hydrodynamic  instabil i ty in the flow is re la ted  to the p resence  in the channel of a 
cr i t ica l  v iscous  l aye r  with a thickness  on the o rde r  of (aRe)-1/~ around the cr i t ica l  point y =Yc, U(Yc) =Real  c 
[8]. A f t e r  the substitution of the independent var iab le  z = ( y - y c ) e  -1, ~= [aRe u'(Yc)]-I/3 in the cr i t ica l  layer  
region,  Eqs.  (4) and (6) assume the following form:  

e,,  ez~-- y~- ~, =0(@.  

I t  follows f rom Eqs.  (7) that,  i f  P r  << ~ - 2 ( d % ) / ( d y ) c  ~, the veloci ty  per turba t ions  can be considered as being 
independent of  t e m p e r a ~ r e  per turba t ions ,  while the subscr ip t  c means that the quantity in question is calcu-  
lated at  the c r i t i ca l  point Y=Yc- If this condition is  sat isfied,  the per turbat ion  of the s t r eam function for 
- 1 - < y - < - r  is  de te rmined  f rom Eq. (6) in the following form: 

& 

k = t  

where  ~Plj2 and ~3, o the "nonviscous" and "viscous"  integrals  of Eq. (6) [7, 9], a r e  wri t ten thus: 
o o  

- ( t , 2 )  2 . 2 /3  

+00 +~ 

Here  I-I(~ ~) are  I-lankel functions of o rde r  1/3 of the f i r s t  and the second kind. l/~ 
In the region of the h igh-viscos i ty  core  - ~  ~ y ~  0, the genera l  solution for per turbat ions  of the s t r e am 

function can be obtained d i rec t ly  f rom Eq. (5), 

q~(1) ~ ~{I)~(I) 
/~=I  

where  the values  of r (B, under  the assumption that [~(0)(c~Re)-t]t/2<< I, a re  found from Eq. (5) in the following 

form: 
(I)  ~,~ = ex9 (~ ~ )  + 0 [(~z ne)-~], 

{ } q~-I' ----- e x p 3 , ,  • ] /~ -Re  (u--c)l[~o"l"u'(~)o I dy {i "F 0 [(~ B'e)-U']}" 

The boundary conditions for per turbat ions  of the s t r e am  function a re  the conditions of "adhesion" of the 
liquid to the walls and the conditions of s y m m e t r y  re la t ive  to the channel axis: 

~(--I) = ~ ' ( - - i )  - -  r  = ~ '"(0)  = 0. (8) 
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The condition for the nontr ivial i ty  of the solutions ~0 and ~0(I), the boundary conditions (8), and the joining 
conditions for  the solutions ~ and ~(I) for  Y=Yc, 

�9 dhq) _ dkq~ (I} 
dy.--- ~ - -  .-~y~ , k = O, t ,  2 ,  3 

[with an a c c u r a c y  to quanti t ies  of the o r d e r  of (~Re) - lP ] ,  lead to a secular  equation for determining the eigen- 
values  of the phase veloci ty  of per turbat ion  

( _  ,) = ( -  ( _ - ; ) +  : r  ( -  ( -  ;) ::] (9) 

It  follows f rom (9) that ,  in the above approximation,  the stabil i ty is affected by the ve loc i ty  distr ibution u=u(y) 
only in the region - 1 -<-< y --<-~; the ve loc i ty  distr ibution depends on the function z = z[T(y)],  which de te rmines  
the var ia t ion  of the non-Newtonian cha rac te r i s t i c s  of the medium. 

As an example,  we shall ass ign  the function z = niT(Y)] in the var ia t ion  interval  of the independent v a r i -  
able y [ - 1 ; - ~  ] in the form • + ra(l-- ~)1-~(_ y _  ~)~, which approximates  the var ia t ion  of non-Newtonian 
p rope r t i e s  of the medium a c r o s s  a channel with cooled walls. 

Figure  2 shows the dependence of the cr i t ica l  Reynolds number Rel* [Re t = R e / ( 1 - ~ )  3] on the p a r a m e t e r s  
m and n, which cha rac t e r i ze  the var iabi l i ty  of the non-Newtonian p roper t i e s  of the medium ac ros s  the channel 
for  different  dimensions of the h igh-viscos i ty  flow core [ .  The curves 1-4 correspond to [ =0, 0.3, 0.6, 0.9, 
while the curves  marked  by le t t e r s  a, b, and c cor respond  to p a r a m e t e r  values  n=2,  3, 4. Analysis of the data 
obtained shows that  cooling of the wails grea t ly  destabi l izes  the non-Newtonian liquid flow (2). This  fact is 
quali tat ively supported by the well-known exper imenta l  data obtained for v iscoplas t ic  pe t ro leum [10]. 

The author is grateful  to K. Bo Pavlov for  the discussion.  
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