(in contrast to the second variant), the steepness and velocity of a wave affecting the stability of its evolution
lie outside the wave slope vs wave velocity diagram which holds for actual waves ([1], Fig. 6.4-2). The above
peculiarities in the evolution of wind waves are in agreement with the results of observations in nature.

For values in the range 0 < Fr< 1/R—R, atrend oppositeto that described above prevails: The leeward
wave slopes become flatter, while the windward slopes become steeper.

Capillary Wind Wave. Variant 3: W=3.995; u=—1; t{e, 0)=¢+ i0.2r sina; Ia, 0)=2 — 0.47 sina. The
calculations are performed for the time up to the moment t=1 for the interval At=1/90 without taking into
account the derivatives I'tyy and £4t. The wave evolution shown in Fig. 4 (the wave peaks and troughs are also
connected by dashed straight-line segments) is similar to the evolution of gravitational waves. However, it is
also characterized by the fact that the wave tops become flatter and the troughs deeper.

With a reduction in the Froude and Weber numbers in comparison with those indicated in variants 1-3,
the wave evolution is retarded, while the critical interval Aty remains almost unchanged. The latter leads to
the fact that, in calculating ripple waves, the role of the nonlinear effects caused by the finiteness of the wave
amplitude is not revealed even if a large amount of computer time is used. This means that the linear theory
adequately describes the motion of finite-amplifude ripple waves.
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HYDRODYNAMIC STABILITY OF TWO-DIMENSIONAL
POISEUILLE FLOW OF A NON-NEWTONIAN

LIQUID WITH A HIGH-VISCOSITY CORE IN A
COOLED CHANNEL

A. S. Romanov UDC 532.51:532.135

Viscoplastic liquids occupy an important position among non-Newtonian liquids [1, 2]. The hydrodynamic
stability of the two-dimensional Poiseuille flow of these liquids was investigated in [3, 4). The mechanical
characteristics of viscoplastic media are determined by the dimensionless rheological equation, which relates
the stress tensor deviator 0y to the strain rate tensor fij [1]:

. —
=914+ 2 for —_— 0,017 =%,
oy; ( +]/2f,jf”)f” V2 17017 =

i
fu=0 o Y Tovm<n

@)

where n=7,L/U is the plasticity parameter; u is the plastic dynamic viscosity; T is the ultimate shearing
stress; L is the characteristic dimension (half-width of the channel); and U is the characteristic velocity. Due
to the existence of the ultimate shearing stress 7, for a viscoplastic liquid, zones where the medium moves
as a quasisolid body as well as viscous flow zones can form in the flow of such a liquid through channels [2].

The dimensionless shearing stress T as a function of the dimensionless shearing rate 6 for unidimen-
sional shear flow of a viscoplastic liquid (1) is shown in Fig. 1. The rheological equation (1) is approximate
for many actual liquids and the flow curve is essentially nonlinear for low shearing rates [5] (dashed curve in

Fig. 1). The rheological law is in this case written conveniently as
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o = 2(0)f;, , (2)

where w= \/zfijfij; n{w) is a continuous monotonic function, which is bounded for 0 Sw =oo; 1=n(w)=yn(0). If
the intensity of the deformation-rate tensor w is larger than, or equal to, a certain value w = w* «1, the
rheological law (2) coincides with (1). The flow regions where w< w* will be referred to as high-viscosity-
flow zones.

Experiments show that the non-Newtonian characteristics of many viscoplastic media depend consider-
ably on the temperature [6]. At a certain temperature T=T* they vanish altogether (1,=0 for T=T*). There-
fore, we shall subsequently consider that 7;,=T,(T) and n=1(T, w).

_ The symmetric distribution of the liquid velocity in a two-dimensional channel which is cooled symmetri~
cally with respect to its axis under the action of a constant dimensionless pressure gradient 9p/8x=—2/Re
(Re=pUL/ is the Reynolds number; p is the density of the medium) under the condition that the flow param-
eters vary little along the channel (8/0x% 0) is determined by

—1
(11— + Scndy+x(—c)<1~c>+0(m*) for —L<y<0,

u(y) == (3)

-1
y?— 2y +1— 25+ [ ndy 4% (—2) (14 ») + O@*)
’ or —1<y< 1,

where £=n/2+ O(w*) is the half-width of the high-viscosity-flow core, which is determined from the equilib-
rium condition, while w(—¢)= w* « 1. The velocity distribution (3) holds only if x[T(y)lly—-; < 2, since,
otherwise, a high-viscosity zone forms at the channel walls, and distribution (3) does not hold.

Consider the hydrodynamic stability of the flow (3) with respect to infinitesimal, two-dimensional, and
periodic with respect to time and channel. length perturbations of the stream function

P(z, ¥, 1) = @(y) exp iz — ct)
and the temperature

0(z, y, t) = v(y) exp ia(z — ct),

where « and «c are the dimensionless wave number and the complex perturbation frequency, respectively.
Although the inapplicability of Squire's theorem in the general case of non-Newtonian media has been demon-
strated in [7], the problem of the effect of three-dimensionality of the perturbing motion on the hydrodynamic
stability of two-dimensional gradient flow of a non-Newtonian liquid characterized by the rheological law (2)
and a function 7= nlw) of arbitrary type should be the subject of an independent investigation.

We obtain the following from the system of equations of motion and energy, neglecting the evolution of
heat due to viscous dissipation, with an accuracy to the infinitesimal values of the higher orders for ¢(y) and
v(y):

i

°
N
N
S
®
3

Fig. 1 Fig. 2
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(u _.c) ((pll — az(P) _ u”(p — 'iq_ine {no (CPIV — 2a2cp” + :
4+ at) 4 2n0 (¢ — aq’) + 1o (@7 + a’g) +
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+ u'a? [(Z—:’,—)o (¢" + a’q) -+ (3—;—)0 v]} (5)

‘where Pr=pC/A is the Prandtl number; C is the specific heat of the medium; A is the thermal conductivity
coefficient; the zero subscript-denotes unperturbed flow; the primes denote differentiation with respect to y.

Equation (5) is simplified in the range —1<y=-—¢:
" d- !
(w—o)(e" —a%) - up =l (7 — 207" +atg) + g | (0] + a2 (%) v - w2 (Z9)] (6)

Development of hydrodynamic instability in the flow is related to the presence in the channel of a
eritical viscous layer with a thickness on the order of (¢Re) t/*around the critical point y =y, ulyo) =Real ¢
[8]. After the substitution of the independent variable z=(y=~yoe ™, e=[aRe u'(yo)]™/% in the critical layer
region, Egs. (4) and (6) assume the following form:

B (11/) [(dTo) +O(a)]“’+'°“v("‘i‘%r‘-§§)=0(sﬂ), (7
10— uthe i [3)0] -0

It follows from Eqgs. (7) that, if Pr« e ~%(dw,)/(dy)c !, the velocity perturbations can be considered as being
independent of temperature perturbations, while the subscript ¢ means that the quantity in question is calcu-
lated at the critical point y=y.. If this condition is satisfied, the perturbation of the stream function for
~1=y=-¢ is determined from Eq. (6) in the following form:

4
P = > CrPrs
E=1
where P1,2 and @3, 4 the "onviscous® and "viscous® integrals of Eq. (6) [7, 9], are written thus:

Q= Eﬂ e (¥ — v, 9y =200, In(y—yo) + go by (¥ — yo)t,

z z B
eni= | @ | ViEg?[ 2 ) as

= -
Here Hil/:) are Hankel functions of order 1/3 of the first and the second kind.

In the region of the high-viscosity core —¢ < y=0, the general solution for perturbations of the stream
function can be obtained directly from Eq. (5),

2 C(I) (I)

where the values of (pkm, under the assumption that {n(O)(aRe)"]i/ 2« 1, are found from Eq. (5) in the following
form:

i = exp (= ay) + O [(a Re)™],

o4} = exp {i ViaRe f 1/ w—ofm+w (5] dy} {1 + 0 [(a Re)4/2)}.
1]

The boundary conditions for perturbations of the stream function are the conditions of "adhesion" of the
liquid to the walls and the conditions of symmetry relative to the channel axis:

o(—1) = @'(—1) = ¢'(0) = ¢'""(0) = 0. (8)
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The condition for the nontriviality of the solutions ¢ and (p(I) the boundary conditions (8) and the joining
conditions for the solutions ¢ and (pm for y Ve

dtg _ D
S=5a E=0L28

[with an accuracy to quantities of the order of (aRe)~Y/ 2], lead to a secular equation for determining the eigen-
values of the phase velocity of perturbation
gs(—1) _ 9= D[0} (= D+ 00 (=D that] — s (= D05 (=D +aga(=Ythat] (9)
7o (=1 9p(— D[ (— 0+ oy (— 1) thal] — @} (— 1) [ 5 (= 1)+ ags (—Dthat]

It follows from (9) that, in the above approximation, the stability is affected by the velocity distribution u=uly)
only in the region —1=y=-—¢; the velocity distribution depends on the function = [T (y)], which determines
the variation of the non-Newtonian characteristics of the medium.

As an example, we shall assign the function »=w[T(y)] in the variation interval of the independent vari-
able y[~1;—¢] in the form %=2{ + m(1— {*"(— y — {)», which approximates the variation of non-Newtonian
properties of the medium across a channel with cooled walls.

Figure 2 shows the dependence of the critical Reynolds number Ref [Re; =Re/(1~¢)%] on the parameters
m and n, which characterize the variability of the non-Newtonian propertles of the medium across the channel
for different dimensions of the high-viscosity flow core £. The curves 1-4 correspond to £ =0, 0.3, 0.6, 0.9,
while the curves marked by letters a, b, and ¢ correspond to parameter values n=2; 3, 4. Analysis of the data
obtained shows that cooling of the walls greatly destabilizes the non-Newtonian liquid flow (2)., This fact is
qualitatively supported by the well-known experimental data cobtained for viscoplastic petroleum [10].

The author is grateful to K. B. Pavlov for the discussion.
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